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Abstract 1 

Terrestrial laser scanning (TLS) has been shown to enable an efficient, precise, and non-destructive 2 

inventory of vegetation structure at ranges up to hundreds of meters. We developed a method that 3 

leverages TLS collections with machine learning techniques to model and map canopy cover and 4 

biomass of several classes of short-stature vegetation across large plots. We collected high-definition 5 

TLS scans of 26 1-ha plots in desert grasslands and big sagebrush shrublands in southwest Idaho, USA. 6 

We used the Random Forests machine learning algorithm to develop decision tree models predicting the 7 

biomass and canopy cover of several vegetation classes from statistical descriptors of the aboveground 8 

heights of TLS points. Manual measurements of vegetation characteristics collected within each plot 9 

served as training and validation data. Models based on five or fewer TLS descriptors of vegetation 10 

heights were developed to predict the canopy cover fraction of shrubs (R2 = 0.77, RMSE = 7%), annual 11 

grasses (R2 = 0.70, RMSE = 21%), perennial grasses (R2 = 0.36, RMSE = 12%), forbs (R2 = 0.52, RMSE = 6%), 12 

bare earth or litter (R2 = 0.49, RMSE = 19%), and the biomass of shrubs (R2 = 0.71, RMSE = 175 g) and 13 

herbaceous vegetation (R2 = 0.61, RMSE = 99 g) (all values reported are out-of-bag). Our models 14 

explained much of the variability between predictions and manual measurements, and yet we expect 15 

that future applications could produce even better results by reducing some of the methodological 16 

sources of error that we encountered. Our work demonstrates how TLS can be used efficiently to extend 17 

manual measurement of vegetation characteristics from small to large plots in grasslands and 18 

shrublands, with potential application to other similarly structured ecosystems. Our method shows that 19 

vegetation structural characteristics can be modeled without classifying and delineating individual 20 

plants, a challenging and time-consuming step common in previous methods applying TLS to vegetation 21 

inventory. Improving application of TLS to studies of shrub-steppe ecosystems will serve immediate 22 

management needs by enhancing vegetation inventories, environmental modeling studies, and the 23 

ability to train broader datasets collected from air and space.  24 
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1. Introduction 27 

Sagebrush steppe, a shrub- and bunchgrass-dominated biome occupying 47 million hectares of 28 

semiarid rangelands in the western United States (Bukowski and Baker 2013), is rapidly being degraded, 29 

fragmented, and lost. Many factors contribute to the loss of sagebrush steppe ecosystems, but the 30 

greatest driver is the “grass-fire cycle” (D'Antonio and Vitousek 1992) where wildfires promote invasion 31 

by nonnative grasses and forbs, which in turn increase the rate and severity of future fires. In many 32 

cases, the new regime of frequent wildfire causes the total replacement of sagebrush ecosystems by a 33 

new steady state of nonnative pyric grassland (Knick 1999, Balch et al 2013). Deleterious impacts of this 34 

shift include increased wildfire hazard and reduced soil retention, forage quality, and biodiversity 35 

(Brooks et al. 2004, Rowland et al. 2011, Balch et al. 2013, Ripplinger et al. 2015). One example of the 36 

urgent threat to the sagebrush biome is the rapidly changing composition of the 195,000 ha Morley 37 

Nelson Snake River Birds of Prey National Conservation Area (NCA) in southwest Idaho, where only 38 

about a third of the area is occupied by native shrub communities due to the effects of numerous recent 39 

fires (USDI BLM 2008). Improved methods to conserve and restore sagebrush steppe ecosystems are 40 

an urgent topic of research (e.g. Pyke et al. 2015). The need for accurate, scalable, and practical 41 

methods of vegetation inventory is common to a variety of sagebrush management inquiries, including 42 

habitat monitoring, wildfire risk evaluation and behavior modeling, and vegetation treatment 43 

evaluation. Hand-measured metrics, such as transect or frame-based measurements of biomass and 44 

structure (i.e., cover, density, height), have historically filled this role and remain the most common 45 

source of data in sagebrush habitat inventories (e.g. Reiner et al. 2010). Biomass and cover are 46 

indicators of productivity and related ecological processes, as well as management processes such as 47 

fuel treatments and grazing resources in sagebrush steppe ecosystems (e.g. Davies and Bates, 2010, 48 

Pyke et al., 2014). Manual sampling methods of biomass and cover provide precise measurements, but 49 

necessitate collections that are highly localized and logistically difficult across vast, remote, and 50 
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heterogeneous shrubland landscapes. Airborne and spaceborne optical remote sensing provide broad 51 

and continuous datasets which are useful for classifying dryland vegetation (e.g. Homer et al. 2012) 52 

although most do not collect the necessary structural information to estimate aboveground biomass. 53 

The use of airborne laser scanning (ALS) to remotely sense dryland vegetation structure has also been 54 

widely developed (e.g. Streutker and Glenn 2006, Mitchell et al. 2011), although ALS sensing encounters 55 

difficulty accurately sampling the full structure of low biomass herbaceous plants (e.g. Glenn et al. 2016, 56 

Li et al. 2017).  57 

Terrestrial laser scanning (TLS) provides a data source intermediate between precise and 58 

localized manual measurements and spatially extensive, coarser measurements from aerial and satellite 59 

platforms. Often consisting of a rotating scanner mounted on an elevated platform, TLS instruments 60 

enable speedy collection of point clouds representing the 3-D position of the surfaces and objects in the 61 

scanner’s field-of-view, including herbaceous vegetation. The instrumentation error of TLS 62 

measurements is usually negligible, and very high density collections (centimeter to a few centimeters 63 

resolution) at ranges up to hundreds of meters are often possible at little logistical expense (Shan and 64 

Toth, 2008, Vosselman and Maas, 2010). Although a TLS instrument samples its full field-of-view up to a 65 

specified range, it is usually unable to sample objects or surfaces which are behind another object from 66 

the instrument’s perspective, causing “shadows” of space without points (aka occlusion) (Cifuentes et 67 

al., 2014). A common technique is to collect and combine point clouds from several positions around a 68 

target area, raising the probability that any given space is in the field-of-view of at least one scanning 69 

location (e.g. Cooper et al., 2017, Van der Zande 2008, Wilkes et al., 2017). However, achieving 70 

complete sampling coverage of surfaces across large vegetated sites may be impractical when using a 71 

field-portable tripod base for the scanner. An approach to mitigate vegetation-caused occlusion is to 72 

elevate the instrument (e.g. using vehicle-mounted masts or high points in terrain), so shadowing in the 73 

point cloud occurs mostly beneath objects and topmost surfaces are sampled consistently (as with ALS, 74 
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e.g. Vierling et al. 2013). Systemic irregularities (usually minor) in TLS point cloud density and the 75 

positional precision of samples also occur where a collection encompasses a variety of ranges, because 76 

the beam diameter of laser pulses (or spot size) and the Euclidean distance between points both 77 

increase exponentially with range from the scanner. A review of current TLS technology, workflows, and 78 

applications related to the discussion above are provided in Telling et al. (2017). Simple structural traits 79 

of plants (such as height) may be measured directly using TLS point clouds, while other ecologically 80 

important traits may be predicted by proxy measurements. When scanning targets at consistent ranges, 81 

TLS measurement of targets’ reflectance at the laser wavelength (“intensity”) has been shown to be a 82 

useful spectral sensor (e.g. Seielstad et al. 2011, Olsoy et al. 2014b). 83 

 TLS has been demonstrated to efficiently replace manual sampling of a variety of common 84 

metrics in forested ecosystems, including tree stem count, basal area, biomass, height, location, leaf 85 

area index, plant area index, spatial vegetation density, and canopy gap fraction (Henning and Radtke 86 

2006, Yao et al. 2011, Zhao et al. 2011, Zhao et al. 2012, Calders et al. 2014, Richardson 2014). Many of 87 

the applications of TLS to shrubland vegetation have studied individual plants, including mapping 2-cm 88 

scale shrub structure for fire behavior modeling (Adams 2014), modeling green and woody biomass of 89 

shrubs (Olsoy et al. 2014b), measuring shrub volume and limb surface area (Kałuża et al. 2012), and 90 

measuring shrub leaf surface area (Loudermilk et al. 2009). Uses of TLS to sample shrubland 91 

environments throughout plots have included ranged (<50 m) sensing and biomass estimation of shrubs 92 

(Greaves et al. 2015), local estimations of shrub and herbaceous fuelbed volume (Loudermilk et al. 2009, 93 

Rowell et al., 2016), identification of individual shrubs across plots and measurement of height and 94 

crown area (Vierling et al. 2013), estimation of wildlife visibility through shrub cover (Olsoy et al. 2015), 95 

estimation of grass biomass (Cooper et al., 2017), and modeling vegetation density profiles in short- and 96 

mixed-height shrublands (Ashcroft et al. 2014). Measurements made using TLS in sagebrush shrubland 97 

plots have also been strongly correlated with ALS measurements, showing that TLS collections may be 98 
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used to “scale up” training data to broader remotely sensed datasets (Li et al. 2015).    99 

A growing body of work has applied machine learning algorithms to classify vegetation and 100 

model structural traits using ALS point cloud data either alone (e.g. Li et al. 2017) or in combination with 101 

spectral datasets (e.g. García et al. 2011). Machine learning approaches to predictive modeling provide 102 

efficient analysis of “wide” data (datasets with many potential predictor variables), and often yield 103 

stronger models than can be derived using simple regression methods. Machine learning models 104 

commonly report error measures which are “out-of-bag” (aggregated from independent cross-105 

validations internal to the modeling algorithm).  For example, the Random Forests algorithm assembles 106 

a predictive model as the aggregation of a multitude of decision trees, each of which retains an 107 

independent 37% of the dataset for validation. The resulting model’s reported out-of-bag R2 and root 108 

mean square error (RMSE) are aggregations of the errors measured in each of the many trees. The error 109 

measurements collected into out-of-bag errors only ever use validation data that has not been used for 110 

training, and often provide more accurate measures of model strength than simple cross-validation tests 111 

(Breiman 1996, 2001a).    112 

In this study we demonstrate a workflow using TLS to predict biomass and canopy cover of 113 

different functional groups of sagebrush-steppe plants across large plots. We use machine learning 114 

(Random Forests (RF)) to leverage the information richness of TLS collections by discovering strong 115 

relationships between statistical descriptors of point cloud distributions represented by 2D pixels and 116 

manually collected measurements of biomass and structure. The main objective of this research is to 117 

develop a straightforward method for quantifying biomass and cover in the sagebrush-steppe across 118 

large plots (1-ha). The research question we aim to address is, to what extent can canopy cover and 119 

biomass of different functional groups of the sagebrush-steppe be quantified without individual 120 

classification of plants in TLS point clouds?  121 

After creation, models of predicted features can be applied to whole 1-ha TLS datasets (both the 122 
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1-ha plots used to develop the model, and new plots in the same study area). Our method does not take 123 

any steps to explicitly delineate or classify plants, a challenging task in many lidar-based inventory 124 

methods. The models we developed had good predictive power overall, despite imperfect TLS point 125 

clouds (collected at oblique angles across plots which included dense shrublands) and some known 126 

errors in spatiotemporal matching of TLS and manual collections. Our experience proves this method as 127 

an efficient, scalable, and resilient workflow to model shrub-steppe vegetation traits across large areas. 128 

 129 

2. Materials and Methods 130 

2.1 Study area 131 

 The study was located within the Morley Nelson Snake River Birds of Prey National 132 

Conservation Area, which encompasses approximately 242,773 ha of the Snake River Plain Ecoregion in 133 

southwestern Idaho, USA (Fig. 1). The mean annual precipitation at the NCA is 24 cm and the average 134 

minimum and maximum annual temperatures are 3.5 ° C and 18.0 ° C, respectively, for the period 1980-135 

2010 (PRISM, 2015). Surface geology includes loess windblown soils interspersed by basalt outcrops. The 136 

native flora is composed of sparse bunchgrasses (e.g., Poa secunda, Elymus elymoides) and an open 137 

canopy of shrubs (i.e., < 50% cover) generally less than 1.5 m tall, underlain by biological soil crust. Big 138 

sagebrush (Artemisia tridentata, primarily ssp. wyomingensis) is the regionally dominant shrub. 139 

Frequent wildfire in the NCA, especially in the last 30 years, has created a patchwork of native shrubland 140 

communities and degraded areas dominated by short-stature native perennials and non-native annual 141 

grasses (predominantly, Bromus tectorum) and forbs. Many degraded areas have been seeded with 142 

native and non-native perennial grasses, resulting in sparsely distributed, relatively tall (i.e., 30-50 cm) 143 

bunchgrasses (USDI BLM 2008).  144 

 145 
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Figure 1. The NCA study area and location of plots with manual and TLS vegetation sampling. The 146 

background image is a National Agriculture Imagery Program (NAIP) true-color image. 147 

 148 

 149 

2.2 Data collection 150 

Our workflow for data collection and processing is detailed in Fig. 2 and described in detail 151 

below. We performed all TLS sampling between 15 May and 14 June 2013. By this date grasses and forbs 152 

were mostly senescent, but structurally intact. We used a stratified random sampling approach to locate 153 

twenty-six 1-ha plots, measuring 100 m by 100 m, for manual and TLS vegetation sampling throughout 154 

the western NCA. The sites spanned a gradient of plant community compositions, including intact 155 

shrublands, areas dominated by non-native grasses, and seeded sites containing taller perennial 156 

bunchgrass species. The plots were split evenly among sites dominated by shrubs and grasses (n=13 157 

each). In each 1-ha plot, vegetation characteristics were collected manually in nine 1-m2 quadrats 158 
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spaced 25 m apart in a 3 by 3 grid centered on the plot (Fig. 3 and 4). This resulted in a total of 234 1-m2 159 

quadrats across 26 plots where paired manual and TLS sampling was performed.   160 

 161 

Figure 2. Workflow of data collection, data processing, and Random Forests analysis resulting in 162 

predictive models for each cover and biomass class.  163 

 164 

 165 

 We deployed elevated disc reflectors at each plot corner to provide control points for 166 

coregistration and georegistration of TLS scans. A small reflector on a tall stake was placed at the center 167 

point of each quadrat to precisely mark its location in the TLS point cloud (after TLS collection, the stake 168 
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was replaced by a surveyor’s flag to mark the center point for manual vegetation sampling). The sides of 169 

square 1-m2 quadrats were aligned with cardinal directions. We performed the TLS collection using a 170 

Riegl VZ-1000 near-infrared (1550 nm) scanner mounted on a 2-m tripod. At a range of 100 m, this 171 

instrument has a reported standard deviation of error of 8 mm and a beam diameter of 30 mm 172 

(corresponding to a beam divergence of 0.3 mrad) (Riegl, Austria). Single-return scans were performed 173 

with 0.02 of separation between pulses. Plots were scanned from five positions, once from the 174 

approximate midpoint of each side (using 180° scans) and once from the approximate plot center (using 175 

360° scans). Our experimental setup took approximately 1-2 hours to collect five scans at each 1-ha plot. 176 

Slight leeway in scanner location allowed for adaptation to reduce occlusion in each scan (Fig. 3). After 177 

scanning was complete, the quadrat stake reflectors were replaced with surveyor’s flags.  178 

  179 
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Figure 3. Examples of 1-ha plot layout and TLS-derived data. Black circles show scanning positions while 180 

black squares show locations of 1-m2 manual sampling quadrats (enlarged for visibility). Coloring shows 181 

the maximum aboveground height of TLS points in 5-cm pixels in plots which are seeded with 182 

bunchgrasses (A), shrub-dominated (B), and native and non-native annual grass-dominated (C). Pixels 183 

occluded from sampling appear as white. 184 

 185 

 186 
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Figure 4. An example shrub-dominated plot with quadrats. White lines and numbers show quadrat 187 

location/layout. Elevated disc reflectors are shown at each corner. Quadrat 2 was omitted from the 188 

analysis due to occlusion (n=136 lidar returns). 189 

 190 

 191 

Manual vegetation sampling at the scale of this study was made possible through collaboration 192 

with a larger, multi-year project being performed by the U.S. Geological Survey (Shinneman et al. 2015). 193 

The U.S.G.S. sampled vegetation characteristics in the field approximately 10 days following TLS 194 

sampling. At each quadrat, a nadir photograph centered on the plot was collected from a height of 2 m, 195 

imaging an area approximately 1 x 1.5 m. The topmost plant species (or lack thereof) were identified at 196 

100 gridded sample points in each photograph using Samplepoint Software (see Pilliod and Arkle 2013), 197 

providing an estimate of the canopy cover of each species across the photo. Species-level data were 198 

aggregated to represent canopy cover of the following classes: bare earth/litter, annual grasses, 199 

perennial grasses, forbs, and shrubs. Aboveground vegetation within or overhanging each 1-m2 quadrat 200 

was harvested and categorized as shrub or herbaceous. Where shrubs were too bulky to be harvested 201 

efficiently, a portion was collected for reference, and the number of equivalent-weight portions 202 
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remaining was estimated for the quadrat. Samples were oven-dried at 65o C for at least 72 hours and 203 

then weighed.   204 

 205 

2.3 Processing  206 

We subsampled the TLS point clouds representing the quadrats to a minimum spacing of 1 cm 207 

between points using an octree filter. Points representing quadrat marker reflectors and other spurious 208 

(“noise”) points were manually removed. Using the BCAL Lidar Tools software 209 

(http://bcal.boisestate.edu/tools/lidar), ground filtering (classification of points as ground or vegetation) 210 

was performed using an iterative grid-based filtering approach that has been widely applied in shrub-211 

steppe ecosystems (e.g. Streutker and Glenn 2006). The same software was then used to calculate 29 212 

statistical descriptors of the vertical distribution of aboveground TLS points (Table 1), storing this 213 

information in 29-band raster files. The BCAL Lidar Tools exploit the rich information about height 214 

distributions in 3D point clouds by creating point statistics directly from the point cloud and reporting 215 

those in a 2D pixel representation. Each point cloud was used to create three 29-band rasters, each 216 

using a different pixel size (5, 10, and 20 -cm) to calculate descriptors of point distribution. Considering 217 

only pixels containing TLS points, we calculated the minimum, maximum, mean, range, and standard 218 

deviation of each of the 29 descriptors listed in Table 1 for each quadrat. As an example, the minimum, 219 

maximum, mean, range, and standard deviation of the 50th percentile of all height points within each 220 

pixel were calculated at the quadrat level. Calculating five statistics about each of 29 descriptors yielded 221 

a total of 145 statistics about point cloud distributions in each quadrat. Hereafter we refer to these 145 222 

statistics as predictors. 223 

 224 

2.4 Quadrat quality control  225 

Through the data review process, we identified 28 quadrats as unfit to include in our analysis. 226 
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Twenty-two of these were discarded due to mistakes (mainly in quadrat placement) stemming from 227 

errors in communication between TLS and manual field sampling teams. One quadrat was discarded due 228 

to a rare ground filtering error that was identified in a cursory inspection of the classified TLS point 229 

cloud. In addition, we set a minimum threshold of 150 TLS returns (after subsampling to 1-cm spacing) 230 

to include a quadrat in the modeling. This threshold was set to exclude quadrats where occlusion 231 

prevented collection of any meaningful structural data (see Fig. 4 for an example). Five quadrats were 232 

discarded using this criterion.  After removing these 28 quadrats, the remaining 206 were used for 233 

further analysis.  234 
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Table 1. Descriptors calculated from the TLS point cloud distribution within each pixel. The minimum, 235 

maximum, mean, range, and standard deviation of each of the descriptors (n=29) within the bounds of 236 

each quadrat were used as predictor variables. All points with a modeled height greater than 0 were 237 

classified as vegetation. 238 

Descriptor 

Minimum height 
5th percentile height  
10th percentile height  
25th percentile height  
50th percentile height  
75th percentile height  
90th percentile height  
95th percentile height  
Maximum height 
Mean height 
Standard deviation of heights 
Range of heights 
Interquartile range of heights 
Kurtosis of heights 
Skewness of heights 
Variance of heights 
Coefficient of variation of heights 
Mean absolute deviation from mean height (AAD) = mean(|height - mean height|) 
Median absolute deviation from median height (MAD) = 1.4826 x median(|height - median 
height|) 
Texture of heights (standard deviation of heights between 5 cm and 15 cm) 
Canopy relief ratio of height points = (mean height - min height)/(max height - min height) 
Percent of returns modeled as ground 
Percent of heights between 0 and 1 m tall 
Percent of heights between 1 and 2.5 m tall 
Count of vegetation returns 
Count of ground returns 
Count of all returns 
Ratio of vegetation returns to ground returns 
Ratio of vegetation returns to total returns 

  239 
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2.5 Random Forests analysis 240 

We used Random Forests to leverage the detailed structural information collected by TLS, 241 

predict diverse vegetation traits using a common method, and apply an automated heuristic approach 242 

to analyze datasets which are complicated by varying scan angles, varying point densities, and patchy 243 

occlusion. RF regression (implemented with Salford Predictive Modeler Software Suite version 7, Salford 244 

Systems, San Diego, CA) was used to develop models predicting field-measured canopy cover and 245 

biomass of vegetation functional groups using the TLS-derived 145 predictors. In each model we found 246 

the bulk of predictors to be of low influence, and the inclusion of most actually decreased model 247 

performance in the testing datasets. We derived models using an automated forward selection 248 

procedure, which creates a 1-predictor model using the strongest solitary predictor, a 2-predictor model 249 

by identifying the second predictor which yields the strongest model in combination with the first, and 250 

so on. We also tested automated backward selection (iterative removal of the least important predictor) 251 

and manual trial-and-error procedures of model derivation, but found that forward selection discovered 252 

superior models in every case. For each of the three sets of predictors created using 5, 10, and 20 -cm 253 

pixels, we collected the first five models of each vegetation feature that were produced by forward 254 

selection. From among these we selected the model of each feature with the highest R2 and lowest 255 

RMSE that used five or fewer predictors. All R2 and RMSE values used and reported are out-of-bag. 256 

Spatial autocorrelation between field observations was considered given that the quadrat 257 

observations within a plot were close together and could possibly exhibit autocorrelation. We tested for 258 

spatial autocorrelation between field observations by taking the residuals from the RF model and 259 

running a one-way ANOVA with the 26 plots as the treatments. If autocorrelation was present, the 260 

residuals from any plot would tend to be mostly positive, or mostly negative. If there was no 261 

autocorrelation the residuals would have random variation around a mean of zero. Using this method, 262 

we found no evidence of autocorrelation.   263 
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 264 

3. Results and Discussion 265 

3.1 Field Canopy Cover and Biomass 266 

 The distribution of field-measured biomass and fractional canopy cover were highly non-normal, 267 

with most biomass and cover estimates clustering near the low or high ranges of measurements. 268 

Likewise, the standard deviation of measurements approached or exceeded the mean measurement of 269 

each variable (Table 2). For example, the mean shrub, bare earth/litter, and annual grass cover was 8%, 270 

41%, and 35%, whereas their corresponding standard deviation was 14%, 27%, and 38%, respectively.  271 

 272 

Table 2. Statistics describing the manual measurements of cover and biomass (n = 206). Minimum 273 

values were all 0. Columns 25th & 75th are percentiles and SD is standard deviation. 274 

Feature 25th  Median 75th  Max Mean SD 

Shrub cover (%) 0 0 8 61 8 14 

Bare earth/litter cover (%) 13 43 61 94 41 27 

Annual grass cover (%) 0 13 73 100 35 38 

Perennial grass cover (%) 1 7 21 70 13 15 

Forb cover (%) 0 0 3 68 4 9 

Shrub biomass (g) 0 0 18 2476 106 322 

Herbaceous biomass (g) 57 97 180 1193 146 158 

 275 

3.2 Predicted Canopy Cover and Biomass 276 

Five of seven Random Forest models achieved out-of-bag R2 > 0.5 correlation with manual 277 

measurements. Descriptors calculated using a 5-cm pixel size yielded the strongest predictors of forb 278 

cover (R2 = 0.52, RMSE = 6%) and herbaceous biomass (R2 = 0.61, RMSE= 99 g) (Tables 3 & 4). A 10-cm 279 

pixel size yielded the strongest predictors of shrub cover (R2 = 0.77, RMSE = 7%), annual grass cover (R2 = 280 

0.70, RMSE = 21%), perennial grass cover (R2 = 0.36, RMSE = 12%), bare earth/litter cover (R2 = 0.49, 281 

RMSE = 19%), and shrub biomass (R2 = 0.71, RMSE = 175 g) (Tables 3 & 4). A 20-cm pixel size did not 282 
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yield the strongest predictors of any feature. The precision of our model predictions ranged between 283 

46% and 165% of mean manual measurements (by comparing the lowest RMSE values from Tables 3 & 4 284 

with mean manual measurements in Table 2). For example, the prediction of the bare earth/litter cover 285 

class had the lowest RMSE in comparison to the mean of the manual measurements (46%), and the 286 

RMSE of the annual grass cover was 60% of the mean manual measurement. These classes were also the 287 

dominant cover classes in the field, as measured by mean percent cover data (41% and 35%, 288 

respectively, Table 2). In comparison, our model predictions which had high RMSE values (e.g. forb cover 289 

and shrub biomass) corresponded to classes that had low vegetation percent cover in our field plots.    290 

We found that while marginal improvements in model quality were made available by testing 291 

several pixel sizes for predictor creation, the benefit was unlikely to be great. Despite a sixteen-fold 292 

difference in the area of the pixel sizes we tested, in only one case was the difference in strength 293 

between the strongest models produced by each pixel size greater than R2 = 0.05 (shrub biomass, 294 

difference of R2 = 0.13) (results provided in Supplementary Material). While we did not find a single pixel 295 

size for predictor calculation to be consistently superior, predictors from 20-cm pixels never yielded the 296 

strongest model, and predictors from 10-cm pixels produced the best across-the-board performance. 297 

Given that differences in the models were low, a 10-cm pixel size can be interpreted to be appropriate 298 

for predicting vegetation cover and biomass in our study area, representing a compromise between too 299 

fine a resolution (5-cm) that over-represents occlusion and too coarse (20-cm) which generalizes subtle 300 

differences in the point cloud. Future studies may also wish to test several pixel sizes to discover which 301 

yield the most useful predictors of the local environment.  302 

Our use of RF was straightforward. For each vegetation feature, we used a forward selection 303 

procedure to derive models using one to five predictors, for each of the 5, 10, and 20 -cm pixel predictor 304 

sets, and selected the model with the highest R2 from the fifteen produced. This method is not 305 

comprehensive, and it is possible somewhat stronger combinations of predictors exist to model some of 306 
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our targets. We expect our experience to match the common case where the top several competing 307 

models of a single feature exhibit similar strengths (even though the predictors they use may differ), 308 

minimizing the importance of which specific model is selected (Breiman 2001b). We presented only 309 

models using up to five predictors, although using one or two fewer predictors would generally not cost 310 

much predictive strength, and allowing one or two more would not cost much parsimony. The 311 

combination of predictors used is inconsistent among models, but some predictors were used more 312 

commonly than others (Tables 3 & 4). For example, a statistic describing the 50th percentile (median) of 313 

point heights in pixels was the top single predictor in every model, except those of shrub biomass.   314 
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Table 3. Predictions of percent canopy cover for annual grass, bare earth/litter, forb, perennial grass, 315 

and shrub classes using the optimal pixel size to calculate point statistics, as generated by the first 5 316 

predictor sets yielded by forward stepwise selection. Predictors are listed in the order they were added 317 

to the predictor set, and resultant models’ predictive strength and root mean square error (RMSE, in %) 318 

are also listed. Bolded is the model explaining the most variance and with the lowest RMSE. If N=4 is 319 

bolded, then the model used the first four predictors; if N=5 is bolded, then the model used all five 320 

predictors. Additional results on the remaining pixel sizes are presented in Supplementary Material. 321 

Vegetation Pixel 
size 

Predictors N R2 RMSE 

Annual grass 10 Mean of 50th percentile heights 1 .59 24 
  Standard deviation of maximum heights 2 .62 23 
  Mean of ratio of vegetation returns to total returns 3 .67 22 
  Mean of ratio of vegetation returns to ground returns 4 .69 21 
  Minimum of 50th percentile heights 5 .70 21 

Bare earth 
/litter 

10 Maximum of 50th percentile heights 1 .38 21 
 Standard deviation of interquartile range of heights 2 .45 20 

  Standard deviation of ratio of vegetation returns to 
ground returns 

3 .48 
 

20 

  Range of percent of vegetation 0 < & <= 1 m high 4 .48 19 
  Mean of percent of vegetation 0 < & <= 1 m high 5 .49 19 

Forb 5 Minimum of 50th percentile heights 1 .47 6 
Standard deviation of minimum heights 2 .48 6 
Maximum of 50th percentile heights 3 .51 6 
Mean of canopy relief ratio 4 .52 6 
Mean of 50th percentile heights 5 .51 6 

Perennial grass 10 Maximum of 50th percentile heights 1 .19 14 
Minimum of coefficient of variation of heights 2 .27 13 
Maximum of 90th percentile heights 3 .32 13 
Minimum of kurtosis of heights 4 .33 13 
Maximum of interquartile range of heights 5 .36 12 

Shrub 10 Maximum of 50th percentile heights 1 .66 8 
Standard deviation of 90th percentile heights 2 .72 7 
Mean of 50th percentile heights 3 .76 7 
Range of skewness of heights 4 .76 7 

Minimum of 50th percentile heights 5 .77 7 

  322 
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Table 4. Predictions of biomass for herbaceous and shrub classes using the optimal pixel size to calculate 323 

point statistics, as generated by the first 5 predictor sets yielded by forward stepwise selection. 324 

Predictors are listed in the order they were added to the predictor set, and resultant models’ predictive 325 

strength and root mean square error (RMSE, in grams) are also listed. Bolded is the model explaining the 326 

most variance and with the lowest RMSE. Both herbaceous and shrub biomass were best predicted 327 

using the first four predictors. Additional results on the remaining pixel sizes are presented in 328 

Supplementary Material. 329 

 330 

Vegetation Pixel 
size 

Predictors N R2 RMSE 

Herbaceous  5 Mean of 50th percentile heights 1 .47 115  

  Minimum of mean of heights 2 .57 104 

  Mean of count of vegetation returns 3 .60 100 

  Minimum of 50th percentile heights 4 .61 99  

  Maximum of 50th percentile heights 5 .60 99 

Shrub 10  Mean of range of heights 1 .58 209 

  Mean of absolute deviation from mean heights 2 .68 183 

  Mean of standard deviation of heights 3 .67 185 

  Minimum of coefficient of variation of heights 4 .71 175 

  Mean of count of returns 5 .69 178 

 331 

3.3 Estimates Without Individual Plant Classification 332 

The class-wise characteristics of vegetation functional groups were predicted without explicit 333 

classification and delineation of individual plants or vegetation classes. However, our workflow using 334 

pixel statistics to extract information from point clouds yielded models with lower fit to ground truth 335 

measurements than those developed using per-plant measures such as crown area or volume (e.g. 336 

Vierling et al. 2013, Olsoy et al. 2014a,b, and Greaves et al. 2015). We are unaware of any studies that 337 

have attempted to sample large plots (1-ha) in dense shrubland using common oblique scanning from a 338 

tripod, and the literature may not represent the difficulty of classifying and delineating small and 339 

closely-spaced plants in point clouds where occlusion is pervasive. Automated classification approaches, 340 



23 

 

such as spatial wavelet analysis and eigenvalue separation, have not been demonstrated across point 341 

clouds where occlusion is common and the sampled vegetation is small and spatially mixed, as is the 342 

common case in TLS collections of desert shrublands. Modeling vegetation characteristics on a per-area, 343 

rather than per-plant basis, is especially valuable when complementary manual sampling considers all of 344 

the vegetation within (and overhanging) a quadrat, and none of the vegetation extending outside of the 345 

quadrat. 346 

 There are some disadvantages to avoiding explicit classification in a TLS-based vegetation 347 

inventory. The strongest predictive relationships between plant structural indices and traits such as 348 

biomass would be expected when a single, complete plant is considered. By contrast, our approach 349 

aggregates structural information from predefined grids across 1-m2 quadrats. This results in 350 

measurements that combine information from all plants and plant classes in a quadrat and excludes 351 

portions of plants which extend beyond the quadrat’s edge. Aggregating structural data from 352 

unclassified plants risks confusing a decision tree when different vegetation compositions of quadrats 353 

exhibit similar signals (e.g. the aggregated measurements of points representing several tall and narrow 354 

bunchgrasses might resemble the measurements of a single tall and stout shrub). We expect the high 355 

RMSE of the shrub biomass predictions were partly caused by these challenges. In fairness, we would 356 

expect some misidentification of vegetation to occur in any TLS-based workflow due to structural 357 

similarity of certain species in different functional groups (e.g. tall forbs, such as tumble mustards and 358 

thistles, resemble shrubs and smaller perennial grasses resemble annual grasses).  359 

 360 

3.4 Field Considerations 361 

Our five-position TLS sampling protocol often provided redundant coverage at excess resolution, 362 

but occlusion was still a challenge in plots with high shrub cover. In some cases, TLS sampling of 363 

vegetation shorter than the top canopies of shrubs was sparse across most of the plot. Nonetheless, we 364 
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discarded only 2% of quadrats due to a low number of TLS returns. Partial occlusion was common in the 365 

remaining quadrats. Measuring with gridded presence/absence windows, average quadrat sampling 366 

coverage of pixels with any number of points in them was 59% (std = 24%) using a 5-cm grid, 80% 367 

(std=19%) using a 10-cm grid, or 92% (std =16%) using a 20-cm grid. That we succeeded in developing 368 

strong models despite occlusion shows that our methods function well using practical TLS field 369 

collections. 370 

 Sampling density (returns per m2) varied widely, depending on occlusion and position relative to 371 

the scan position layout.  We calculated statistics about the counts of TLS returns per quadrat by 372 

quadrat position (center, middle-edge, corner), and the counts of returns in every 1-m2 grid cell across 373 

plots (which we stratified by grass and shrub-dominated plots).  In addition to statistics about return 374 

counts, we calculated the percentage of quadrats or 1-m2 grid cells which did not meet the 150 return 375 

minimum threshold for modeling.  We found that sites adjacent to scan positions (e.g. center quadrats) 376 

were commonly sampled with thousands more returns than sites that were further away.  The 377 

distribution of sampling densities of the total population of 1-m2 quadrats closely resembles that of the 378 

total population of 1-m2 grid cells, indicating that our quadrat placement protocol was adequate to 379 

represent sampling variability throughout plots.  Additionally, only 4% of 1-m2 grid cells were below the 380 

150 point minimum threshold. Taken together, these results confirm that our models can be applied 381 

with the reported strength nearly continuously across 1-ha plots (Table 5).  382 

 383 

Table 5. For center (n=1 quadrat x 26 plots), middle-edge (n=4 x 26), and corner (n=4 x 26) quadrat 384 

positions, and across all 1-m2 grid cells in grass (n=10,000 grid cells x 13 plots) and shrub-dominated 385 

plots (n=10,000 x 13), we report statistics about the counts of TLS returns and the percentage of 386 

quadrats or grid cells below the 150 return minimum threshold. We report the same statistics for all 387 

quadrats (n=9 quadrats x 26 plots) and all 1-m2 grid cells (n=10,000 grid cells x 26 plots). Refer to Figures 388 
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3 and 4 for quadrat layout. 389 

Region type Min 25th  Median 75th  Max Mean < 150 returns 

Center quadrats 1,474 5,708 8,245 12,600 34,770 10,260 0% 

Middle-edge quadrats 2 805 1,504 2,782 12,370 1,976 2.9% 

Corner quadrats 22 514 930 1,482 6,730 1,213 1.9% 

All quadrats 2 666 1,268 2,731 34,770 2,558 2.1% 

1-m2 grid cells in grass plots 0 683 1,216 2,402 70,110 2,534 1.4% 

1-m2 grid cells in shrub plots 0 581 1,312 3,011 103,000 2,936 6.6% 

1-m2 grid cells in all plots 0 639 1,257 2,679 103,000 2,730 4.0% 

 390 

The greatest source of occlusion in the TLS sampling was dense shrub canopies, which in the 391 

highest shrub cover plots blocked sampling of almost half of 5-cm gridded windows within the hectare 392 

area. On average, the 5 quadrats discarded due to occlusion had relatively high shrub cover (21%), 393 

average bare earth/litter cover (41%), and low annual grass cover (5%), reflecting the general 394 

composition of the shrub-dominated plots in which they occurred. That these quadrats contained 395 

substantial amounts of both the most and least physically prominent vegetation cover classes (shrub 396 

and bare earth/litter) supports our field observation that instances of near-total occlusion within 397 

quadrats is mainly a consequence of surrounding vegetation, and not low-lying or impenetrable 398 

vegetation within quadrats themselves.  399 

While the algorithm we used for ground classification has been widely tested in similar 400 

shrubland environments (e.g. Glenn et al., 2011, Mitchell et al., 2011, Streutker and Glenn, 2006), error 401 

due to occlusion and confusion of plants and the ground surface may have resulted in the low R2 of the 402 

model predicting coverage of bare earth/litter. Imperfect ground classification and surface modeling will 403 

also result in errors in point cloud measurements of height (e.g. Ashcroft et al. 2014, Fan et al. 2014). 404 

Better sampling coverage of 1-ha plots with densely spaced shrubs could be achieved by scanning from 405 

more than 5 positions, moving positions from the plot edge inward, or by further elevating the TLS. 406 

Although classification errors were a possibility, and we discarded a single quadrat due to a ground 407 

filtering issue, classifying vegetation and ground was not a major operational challenge in this workflow.  408 
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As a result of pairing this pilot study with a pre-existing campaign to measure and harvest 409 

vegetation, spatial matching of point clouds to areas sampled manually was imperfect, potentially 410 

yielding imprecise compositional measurements if the quadrat vegetation is not representative of its 411 

surroundings. The area considered in photograph samples and canopy cover inventory (1.5 m2) was 412 

larger than the 1-m2 quadrats considered in the TLS data. We were not able to adjust the area 413 

considered in TLS point clouds to match the extent of photos due to inconsistent photo orientation 414 

(allowing field technicians to work around their environment).  415 

Small discrepancies in quadrat placement within TLS point clouds (marked with field flags in 416 

scans and on the ground) versus the actual manual sampling locations may have introduced some 417 

erroneous biomass values to our dataset, especially where a relatively large amount of a quadrat’s 418 

vegetation has been wrongly included or excluded. Although growth and decomposition of vegetation is 419 

slow in our field area, a typical delay of up to two weeks between TLS and manual sampling could also 420 

allow for compositional changes (e.g. trampling, grazing, or senescent plants or litter blowing in or out of 421 

the plot) in quadrats between collections. The method of harvesting only a representative portion of 422 

large shrubs likely caused some imprecision in shrub biomass measurements. Ideally, future studies 423 

would conduct TLS and vegetation sampling at the same time using the same field team.   424 

The TLS methodology presented here allows for repeat scanning to monitor changes in 425 

vegetation structure on a per-area basis. Once predictive models have been trained to satisfactory 426 

strength for a study area, the need for further carefully-coordinated manual sampling is eliminated.  427 

 428 

3.5 Future Studies 429 

Future studies might also enhance implicit vegetation classification within RF models by 430 

calculating additional pixel statistics of high-resolution spectral imagery gathered from airborne or 431 

spaceborne platforms. A single band spectral dataset may also be collected by normalizing the intensity 432 
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of TLS pulse returns to range effects (e.g. Nield et al. 2014, Zhu et al. 2015), but the complex model 433 

required to resolve intensity effects of vegetation size, angle, and spectral reflectance, atmospheric 434 

conditions, and beam divergence in sagebrush steppe vegetation has not been demonstrated. Structure-435 

from-motion (SfM) derived point clouds from optical imagery of similar precision and density to those 436 

used in this study have recently been published (Cooper et al., 2017, Wallace et al., 2017, Olsoy et al., in 437 

review). The methods developed herein could be applied to such data with the potential benefits of 438 

fewer areas of occlusion with a (near) nadir sampling platform. One should consider that the understory 439 

of shrub-dominated plots or other high biomass vegetation near the ground surface may be under-440 

sampled with the use of optical imagery to generate the point clouds (e.g. Wallace et al., 2017). 441 

Regardless of platform, measures of occlusion could potentially be used as an inverse measure of 442 

vegetation presence or absence across a large plot, with careful consideration of beam divergence with 443 

scan range and use of visibility models (e.g. Lin and West, 2016, Murgoitio et al. 2014, Zhao et al. 2012). 444 

Future studies should consider the minimum number of field measurements needed for a statistically 445 

robust relationship between field data and point cloud statistics.  446 

We would expect future applications of our approach to remove some of the sources of error 447 

we listed, allowing even stronger models to be developed. Despite some preventable challenges, our 448 

workflow produced models of strength, demonstrating the capability to use a TLS/machine learning 449 

approach to extend localized manual vegetation sampling in sagebrush steppe habitats to much larger 450 

plots. In sum, our methods are automatable, applicable to a broad range of mixed and short-stature 451 

vegetation communities, yield models which are continuous, and provide analysis of “messy” clouds 452 

where occlusion is common, plants are small, and vegetation classes are mixed. 453 

 454 

4. Conclusions 455 

This study illustrates an efficient and effective method to relate TLS point clouds with ground-456 
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truthing data for prediction of cover and biomass of shrubs and grasses at 1-m2 scale across large plots. 457 

Our method of TLS sampling was time efficient and the workflows to calculate predictors from point 458 

clouds and generate models can be largely automated. Once generated, a model can be applied to a 1-459 

m2 grid across the whole plot. A significant strength of our method of calculating TLS predictor variables 460 

is that it does not require explicit classification and delineation of vegetation groups being studied—a 461 

challenging and time consuming task which may be impossible when vegetation is dense and vegetation 462 

classes are spatially mixed. Although our workflow is highly transferrable to point clouds derived from 463 

SfM and to similar ecosystems outside of our study area, new models will need to be trained based on 464 

data collection methods, specific ecosystem conditions, and considerations of timing due to phenology. 465 

Our methods supply a convincing demonstration of the ability of machine learning to exploit the 466 

richness of point clouds, generating models of shrub-steppe biomass and cover which are accurate, 467 

efficient to develop, and easy to extrapolate as continuous rasters across large plots. 468 

There are urgent needs for quick and accurate vegetation measurements that provide ecological 469 

and management indicators in the highly imperiled sagebrush steppe and in other dryland ecosystems. 470 

Our method of vegetation inventory across large plots has immediate applicability to numerous research 471 

and management needs which presently rely on localized manual measurements, including ecological 472 

productivity and status, evaluation of wildlife habitat, evaluation of landscape management practices, 473 

and fuel load surveys for wildfire risk. TLS-based models of vegetation characteristics may also serve as a 474 

stepping stone to train broader-scale datasets collected from air or space (e.g. Li et al. 2015, Greaves et 475 

al. 2017). The spatially explicit, realistic, high-resolution vegetation information across large plots may 476 

also be an invaluable data source for landscape simulations, such as wildlife habitat use, wildfire 477 

behavior, or erosion processes.  478 
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